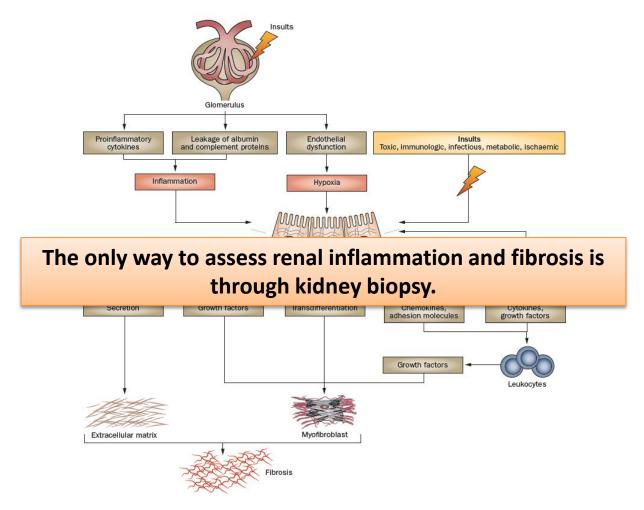


Urinary biomarkers of chronic kidney disease

Lin-Li Lv M.D., PhD
Prof. Bi-Cheng Liu M.D., PhD
Institute of Nephrology, Zhong Da Hospital,
Southeast University School of Medicine



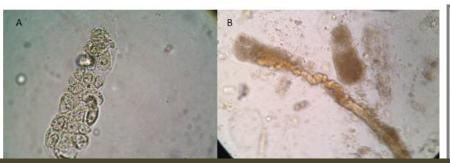
Novel biomarker is needed for Precise Medicine of kidney disease

- China's adult prevalence rate of CKD is 10.8%
- The biomarkers for early detection and dynamic monitor of kidney disease is still missing
- Novel biomarkers are needed for precise diagnosis

CKD is a progressive disease from inflammation to fibrosis

Noninvasive diagnostic biomarkers are needed to complement kidney biopsy

- Kidney biopsy is an invasive procedure and cannot be performed repeatedly
- It is associated with discomfort and a risk of major complications
- Cannot be employed in the early detection and screening test

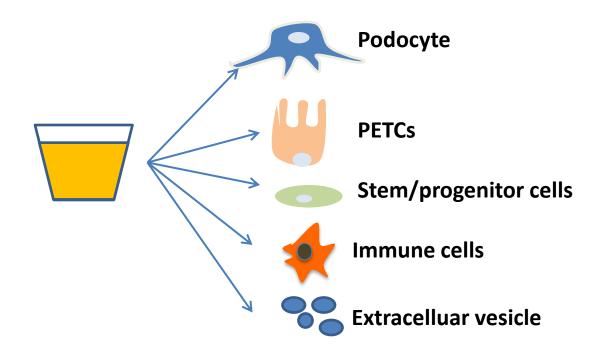


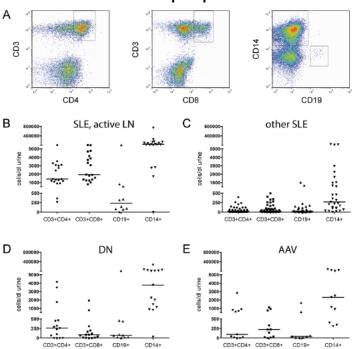
Urine contains rich biological information: An ideal source for non-invasive biomarker

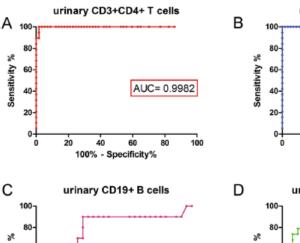
Cell (debris), extracelluar vesicle Protein RNA (mRNA, non-coding RNA)

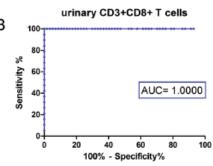
Urine sediment examination is a well-established test in the evaluation of patients with kidney disease

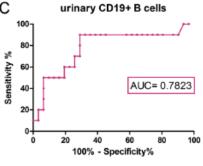
The Physician
Gerrit DOU
Leiden(1631-1675)

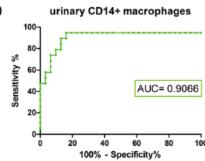

More information to be explored in Urine sediment!


Human Urine as a Noninvasive Source of Kidney Cells

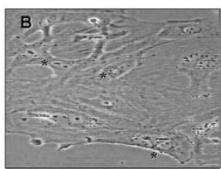


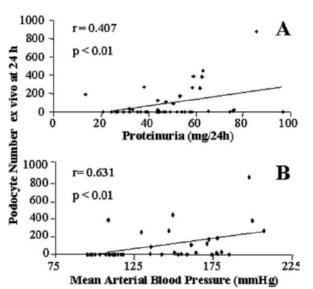

Urinary immune cell biomarker for Lupus nephritis

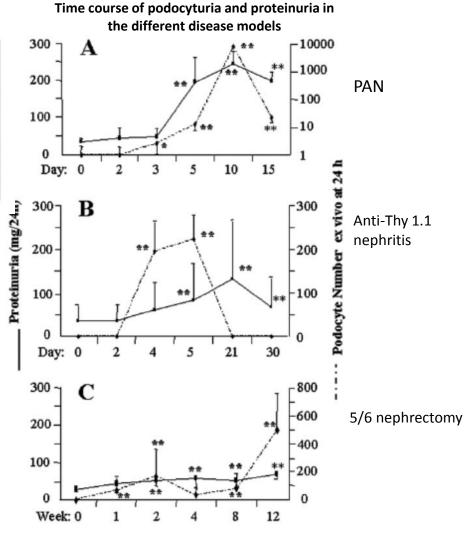

Urinary cells in SLE patients and in patients with different nephropathies.



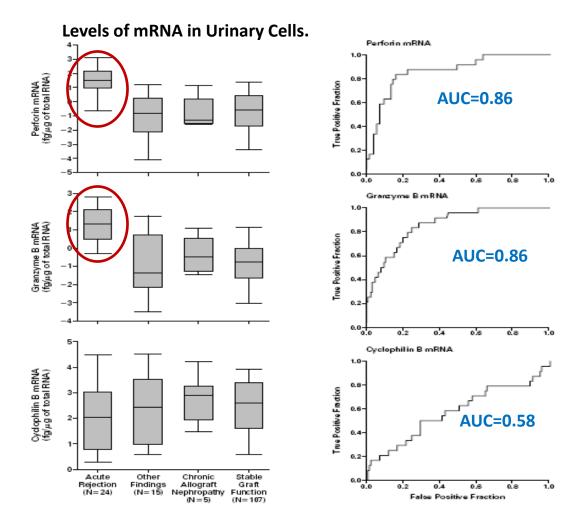
Diagnosing proliferative lupus nephritis (LN) among SLE patients



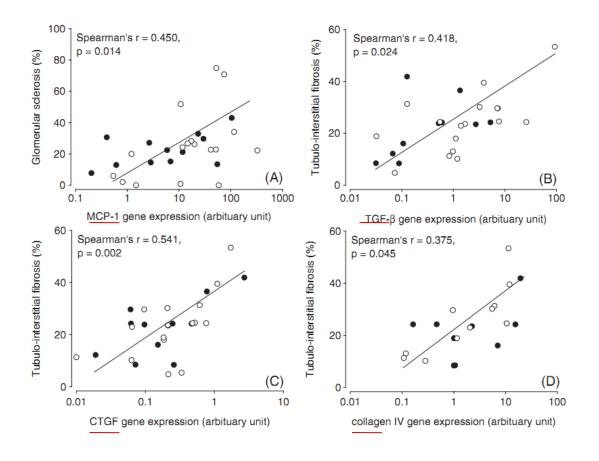



Urinary Podocyte Loss Is a Specific Marker of Ongoing Glomerular Damage

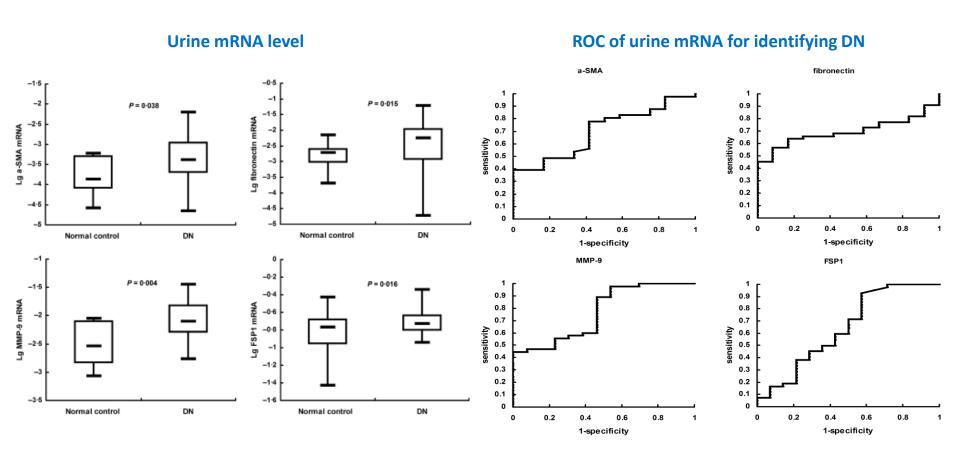
Viable Podocytes from the Urine

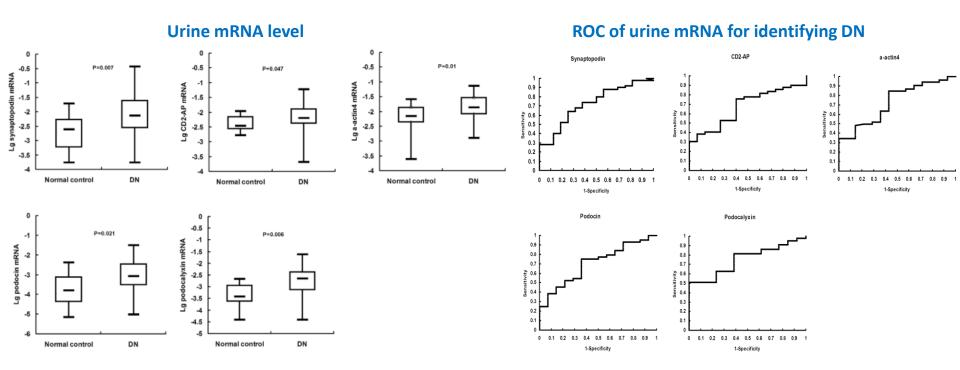


Urinary sediment RNA—Novel CKD Biomarkers

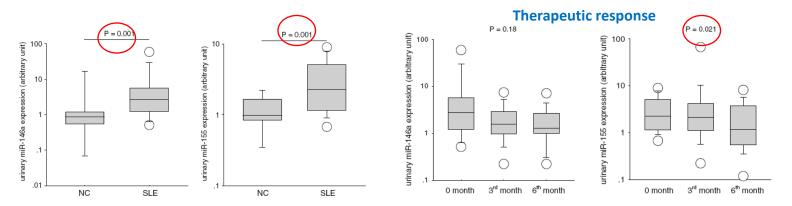

- Urinary sediments contains shedding cells originated from the kidney and urinary tract.
- Real-time PCR can make rapid detection with low cost.
- Genetic markers are more stable compared with protein markers.

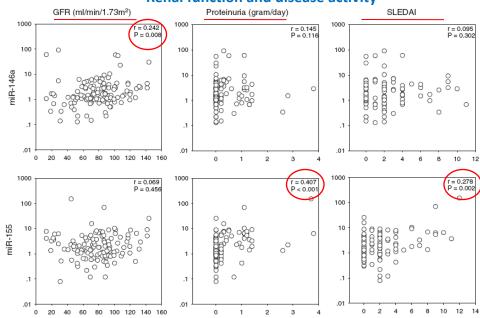
Urinary Perforin, Granzyme B mRNA in Diagnosing Acute Rejection of Renal Allografts


Relation Between Cytokine mRNA Expression in Urinary Sediment and Histological Damage


Urinary HGF mRNA may be a useful tool for predicting CKD progression

	Hazard Ratio	95% Confidence Interval	Р
Sex*	2.203	1.137-4.265	0.019
Age (y)	1.044	1.021-1.067	< 0.001
Proteinuria (g/d)	1.076	1.032-1.121	< 0.001
Estimated GFR (mL/min/1.73 m ²)	0.951	0.934-0.969	< 0.001
Renal diagnosis			< 0.001
Diabetic nephropathy	5.222	1.748-15.604	0.003‡
Tubulointerstitial scarring (%)	1.042	1.029-1.055	< 0.001
Glomerulosclerosis (%)	1.021	1.011-1.032	< 0.001
Urinary mRNA expression§			
CTGF	1.453	0.946-2.232	0.088
HGF	1.035	1.003-1.067	0.031
Vascular endothelial growth factor	0.998	0.989-1.006	0.607
TGF-β1	0.977	0.920-1.036	0.436
MCP-1	2.536	0.633-10.167	0.189
Collagen I	1.367	0.730-2.561	0.329
Collagen III	1.003	0.995-1.012	0.419
Collagen IV	1.027	0.943-1.118	0.543
Fibronectin	1.022	0.933-1.119	0.643
Caspase 3	0.952	0.736-1.231	0.705
α-Smooth muscle actin	0.958	0.870-1.056	0.392


Urinary sediment α-SMA, fibronectin, MMP-9 and FSP1 mRNA increased significantly in DN patients


Urinary sediment Podocyte mRNA expression in diagnosing DN

miR-146a and miR-155 from urine sediment could be used as potential markers of lupus nephritis

PCR array for Urinary sediment mRNA Detection

COL5A2	AGT	NFKB1	MAPK1 4	transfer rin	RBP4	cytokerat in18	FABP- 1	Fn	PAI-1	α-SMA	H
wt-1	IFN-γ	MCP-1	TNF-a	nephrin	TGFβ	MAPK8	JAG2	JAG1	NOTCH4	NOTCH3	G
NOTCH2	NOTC H1	NGAL	KIM-1	ACE2	ACE	REN	RAGE	PPARG	UMOD	B2M	F
AMBP	СР	RANT ES	LAMA5	LAMC 2	BMP7	SMAD7	SMAD 4	SMAD3	SMAD2	SMAD1	E
ILK	ETS1	LEF1	SNAI2	SNAI1	TWIST1	CDH2	DES	FSP1	VIM	CDH1	D
COL4A1	COL3A	TIMP1	TIMP2	ММР9	MMP2	PODXL 2	PODX L	ACTN4	SYNPO	FAT1	С
СДНЗ	ZO-1	ITGB1	ITGA3	CD2AP	NPHS2	CRP	VCAM 1	ICAM1	IL18	IL8	В
IL6	IL1B	IL1A	EGF	FGF23	PDGF-B	VEGF-B	VEGF- C	CTGF	IGF1	HGF	A

证书号第1611525号

发明专利证书

发 明 名 称: 基于实时荧光 PCR 的尿沉渣细胞肾脏纤维化检测芯片

发 叨 人: 刘必成;曹玉涵;雷向东

专 利 号: ZL 2013 1 0535181.3

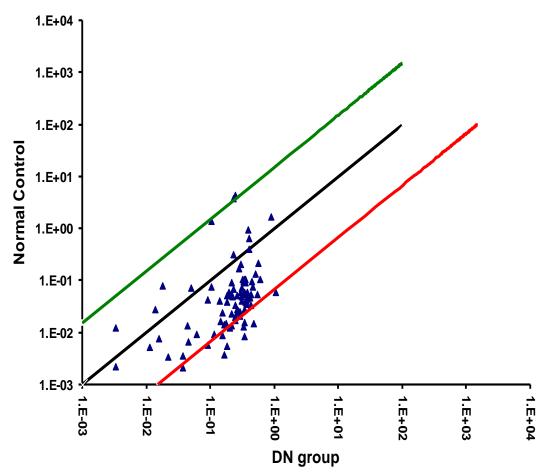
专利申请日: 2013年11月01日

专 利 权 人: 东南大学

授权公告日: 2015年03月25日

本发明经过本局依照中华人民共和国专利法进行审查,决定授予专利权,颁发本证书 并在专利登记簿上予以登记。专利权自授权公告之日起生效。

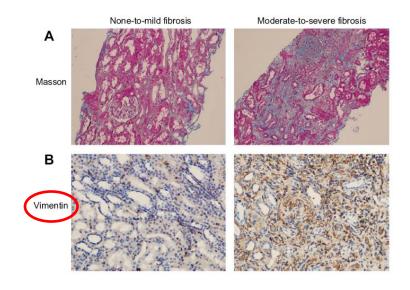
本专利的专利权期限为二十年,自申请日起算。专利权人应当依照专利法及其实施细则规定缴纳年费。本专利的年费应当在每年11月01日前缴纳。未按照规定缴纳年费的,专利权自应当缴纳年费期满之日起终止。


专利证书记载专利权登记时的法律状况。专利权的转移、质押、无效、终止、恢复和 专利权人的姓名成名称、国籍、地址变更等事项记载在专利登记簿上。

局长申长雨

中公布

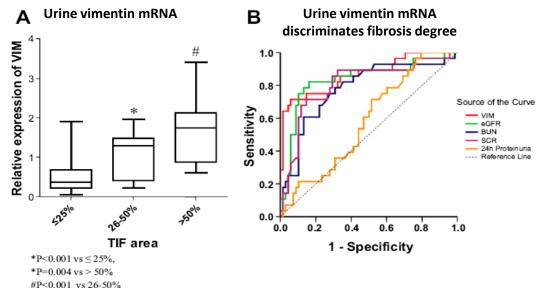
Fold Change Expressions of multiple mRNAs Between DN Patients and Controls



Fold change expressions of mRNAs between DN patients and controls. Red and green lines represent fold change above or below 15 respectively. Those mRNAs with 15 fold increased levels when DN patients were compared with normal controls included 8 ones as followings: NOTCH3, ACTN4, CDH2, ACE, FAT1, COL4A1, SYNPO, TWIST1. And TIMP-1 was found with 15 fold decreased levels in DN group compared with normal controls.

Vimentin mRNA of urine sediment was identified from the screening study of CKD

Table 3. Functional categories and fold changes of 21 differentially regulated mRNAs


Gene Name	Functional Category	Fold Change	P Value
VIM	Mesenchymal cell marker	9.99	< 0.001
HGF	Growth factor	8.50	0.014
FGF2	Growth factor	8.39	0.036
MMP7	Matrix metalloproteinase family	7.13	0.007
PPARG	Type II nuclear receptor	5.26	0.005
SMAD7	TGFβ family	5.02	0.016
MCP-1(CCL2)	Chemotactic cytokine	4.71	< 0.001
SMAD2	TGFβ family	4.66	0.014
RANTES(CCL5)	Chemotactic cytokine	4.57	0.046
PODXL	Podocyte marker	4.43	0.013
TGFβ1-R	TGFβ family	4.27	0.038
FSP-1	S100 family	3.39	< 0.001
CCL4	Chemotactic cytokine	3.37	0.008
P53	Tumor suppressor gene	3.25	0.012
TLR2	Toll-like receptor	3.08	0.036
PAI-1	Serine protease inhibitor	3.06	0.021
FN1	Extracellular matrix component	2.92	0.040
TIMP1	Tissue inhibitor of metalloproteinases	2.74	< 0.001
TNF	TNF family	2.63	0.006
MMP9	Matrix metalloproteinase family	2.55	0.024
TGFβ1	TGFβ family	2.23	0.006

vimentin mRNA was validated in an independent set of study

Table 2. Characteristics of the study subjects

	Control $(n = 31)$		CKD (n	P Value		
	Training $(n = 11)$	Validation $(n = 20)$	Training $(n = 39)$	Validation ($i = 96$)	Training	Validation
Age, yr	36 ± 10	34 ± 10	42 ± 15 ^a	42 ± 15 ^a	0.253°	0.056°
Gender (male/female)	4/7	8/12	19/20	40/56	0.468^{d}	0.170^{d}
SBP, mmHg	119 ± 10	126 ± 8	136 ± 15^{a}	133 ± 20^{a}	0.061°	0.084^{c}
DBP, mmHg	80 ± 8	82 ± 6	86 ± 19^{a}	83 ± 14^{a}	0.279°	0.271°
Scr, mmol/l	63 ± 8	61 ± 9	116 ± 90^{a}	93 ± 57^{a}	0.001°	< 0.001°
eGFR,e ml-1.73 m-2	116 ± 10	117 ± 11	82 ± 36^{a}	90 ± 35^{a}	<0.001°	< 0.001°
BUN, mmol/l	4.71 ± 1.07	3.80 ± 0.97	7.27 ± 3.91^{a}	6.80 ± 4.62^{a}	0.001°	< 0.001°
Proteinuria, g/day	/	/	2.77 (0.11,18.32)b	2.89 (0.29,12.80)b	/	/
Score of glomerular sclerosis	/	/	0.80 (0.00,4.00)b	0.52 (0.00,4.00)b	/	/
Score of TIF, %	/	/	18 (0.5,80) ^b	10 (0.5,90) ^b	/	/

Urine supernatant inflammatory biomarkers for LN

- LN are often treated without the benefit of kidney pathology after initial treatment
- A continuous read-out of kidney pathology would be helpful in following therapy for LN
- Urine inflammatory cytokines might be biomarker of histological activity.

Urine MCP-1 and Lupus Nephritis Disease Activity

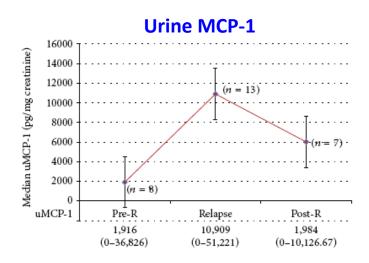
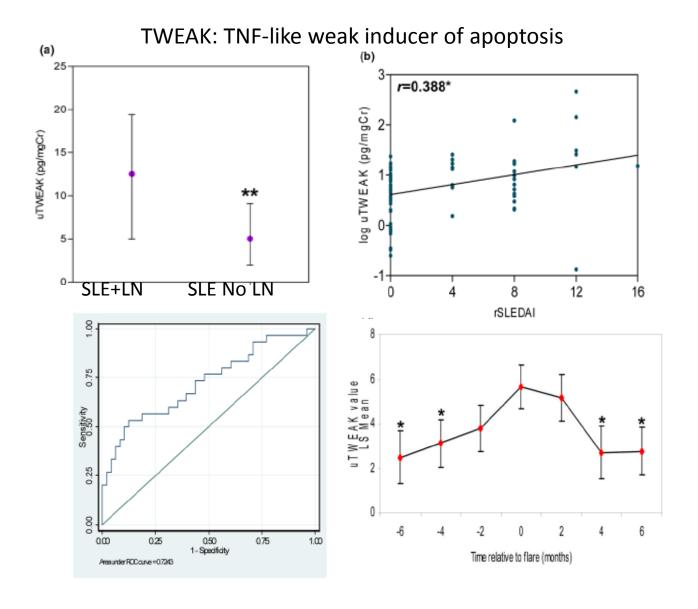
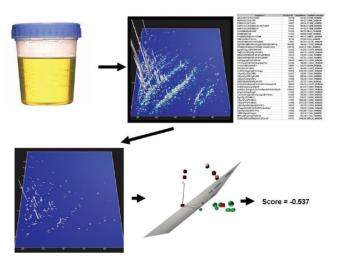
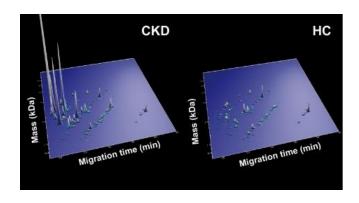



Table 4: Association of uMCP-1 with parameters of LN activity on follow-up.


Spearman's rho variable	Baselii	ne (47 : 53)	2 mont	ths (29:71)	4 months (22:78)	
(active: inactive LN)	$r_{ m sp}$	p value	$r_{ m sp}$	p value	$r_{ m sp}$	p value
Serum albumin	-0.35	0.001	-0.32	0.001	-0.22	0.03
Serum creatinine	0.09	0.38	0.14	0.15	0.24	0.01
eGFR	-0.10	0.30	-0.15	0.12	-0.24	0.01
Anti-dsDNA Ab titers (IU)	-0.04	0.64	-0.19	0.06	0.01	0.89
C3 (mg/dL)	-0.09	0.34	-0.29	0.003	-0.04	0.70
C4 (mg/dL)	0.02	0.80	-0.23	0.02	-0.01	0.86
Proteinuria (uPCI)	0.39	0.001	0.48	< 0.001	0.41	< 0.001
Leukocyturia	0.26	0.008	0.21	0.03	0.19	0.06
Haematuria	0.13	0.18	0.09	0.38	0.11	0.24
SLEDAI-2K global score	0.27	0.006	0.42	< 0.001	0.29	0.004
SLEDAI-2K renal score	0.39	0.001	0.43	< 0.001	0.35	0.001
SLEDAI-2K-extrarenal score	-0.08	0.42	-0.18	0.74	-0.11	0.27

Urinary TWEAK as a biomarker of lupus nephritis


Schwartz N et al. Arthritis Res Ther. 2009;11(5):R143.

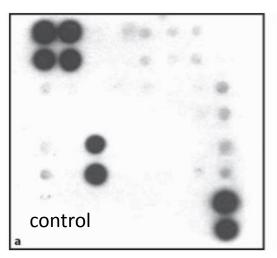
High-throughput analysis of urine protein: Urine proteomics

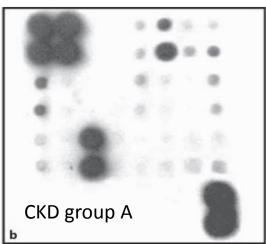
- Abundance of molecular information obtained from urinary proteome analysis.
- It is at the transition towards clinical implementation.

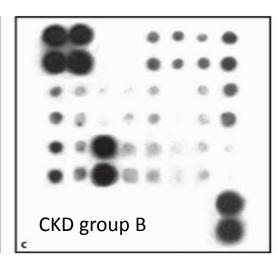
Urinary peptides (CKD273) is well suited for the early detection of CKD and for prognosis of progression

<u>J Am Soc Nephrol.</u> 2015 Aug; 26(8): 1999-2010. doi: 10.1681/ASN.2014050423. Epub 2015 Jan 14.

Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides.

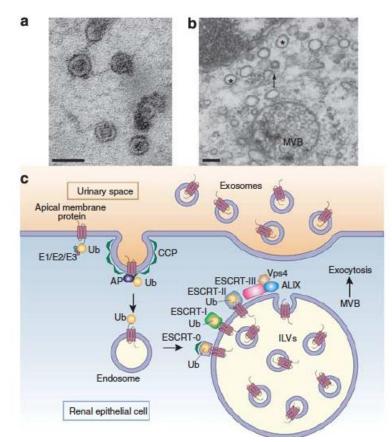

Nephrol Dial Transplant (2014) 29: 1563–1570 doi: 10.1093/ndt/gfu039 Advance Access publication 2 March 2014


Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy


PRIORITY, a multicentric intervention study (3280 diabetic patients)

Siwy J et al. Nephrol Dial Transplant. 2014 Aug;29(8):1563-70. Schanstra et al. J Am Soc Nephrol 2015; doi: 10.1681/ASN.2014050423

Urine cytokine increased in CKD patients

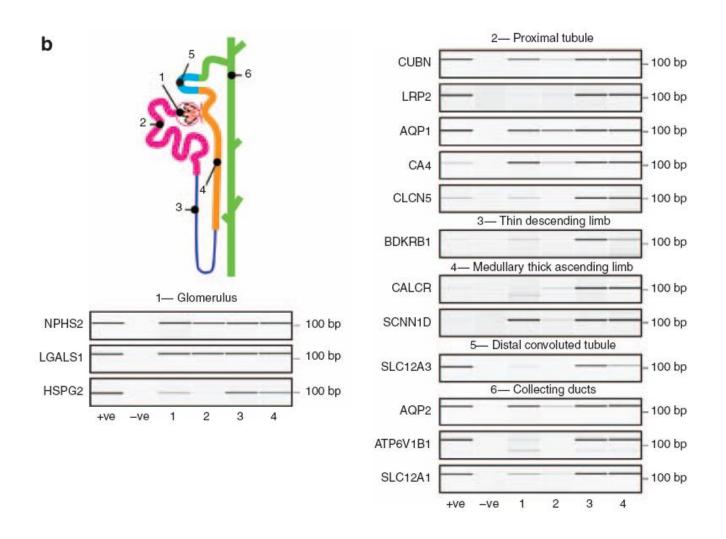


	Control group	CKD group A	CKD group B
E-selectin Fas ICAM-1 IL-2 MCP-1 MMP-2 MMP-9 PDGF-BB RANTES TGF-β	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	group A 4.4 \pm 2.4 ¹ 4.3 \pm 2.4 ¹ 4.3 \pm 1.7 ¹ 4.9 \pm 4.7 ¹ 4.9 \pm 4.3 ¹ 2.3 \pm 1.2 ¹ 492.8 \pm 129.5 ¹ 0.2 \pm 0.3 ¹ 3.7 \pm 1.0 ¹ 2.3 \pm 1.4 ¹	3.4 \pm 2.1 ¹ 3.7 \pm 3.7 ¹ 1.5 \pm 0.8 1.3 \pm 0.8 8.7 \pm 5.1 ¹ 1.9 \pm 1.5 198.7 \pm 82.2 ¹ 0.6 \pm 0.4 6.1 \pm 8.1 ¹ 0.8 \pm 0.1
TIMP-1 TNF-α VCAM-1 VE-cadherin VEGF	1.0 1.0 1.0 1.0	3.2 ± 1.3^{1} 13.5 ± 11.5^{1} 0.5 ± 0.7^{1} 1.4 ± 0.7 3.6 ± 2.4^{1}	6.9 ± 0.6^{1} 27.4 ± 45.5^{1} 1.0 ± 1.2 7.3 ± 12.4^{1} 6.6 ± 5.6^{1}

The relative value of cytokine in each group was converted into the n-fold change, which was expressed as means \pm SD. For explanation of abbreviations, see table 3.

Urinary Extracellular Vesicles (EVs)fluid biopsy of kidney

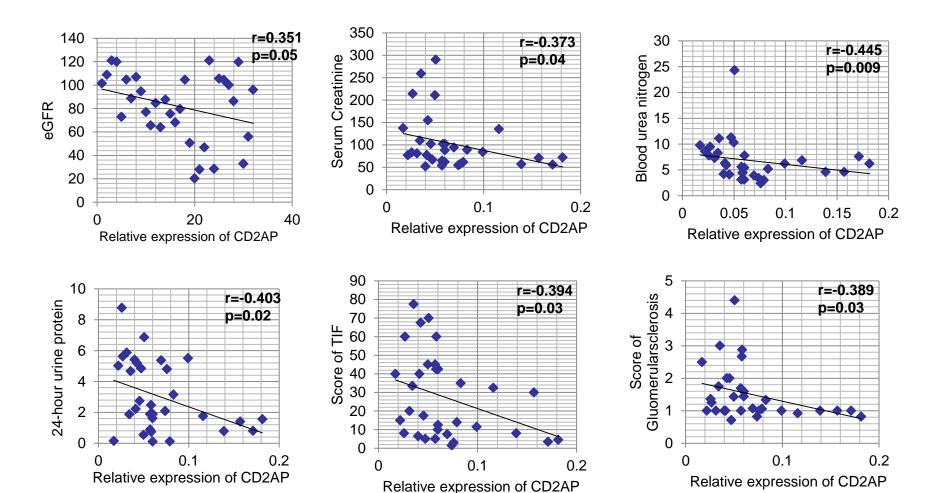
- Urine EVs are small particles originating from cells of different nephron segments or of the urinary tract
- Released with cytoplasmic proteins, lipids, nucleic acids
- Urinary EVs represent a unique source of information for diagnostic purposes



Subsets of Extracellular Vesicles


Table 1 Characteristics of exosomes, microvesicles and apoptotic bodies

	Exosomes	Microvesicles	Apoptotic bodies
Size	30–100 nm	100–1000 nm	Up to 4000 nm
Formation and release	Formed intracellularly within	Shed from plasma membrane surface	Cellular breakdown
	multivesicular bodies		Release from cellular blebs during apoptosis
Isolation and detection	Ultracentrifugation, electron microscopy, western blotting, mass spectrometry, nanoparticle tracking analysis	Differential centrifugation, flow cytometry, electron microscopy, western blotting, mass spectrometry, nanoparticle tracking analysis	Flow cytometry using e.g. FITC-conjugated annexin V antibody, electron microscopy
Markers	Alix, TSG101 and the tetraspanin proteins CD81 and CD9	Integrins, selectins, markers of parental cells	Genomic DNA and intact organelles, externalized phophatidylserine
References	1-4	1-5	2-4


Urinary exosome contain mRNA transcripts encoding specific genes from various regions of kidney

Exosome from podocyte was isolated from urine

Urinary exosome CD2AP mRNA correlated with kidney function and histological change

miRNAs was mainly packed in urinary exosome

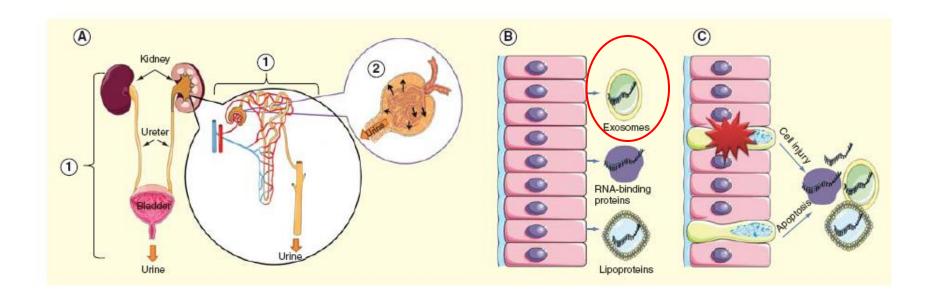
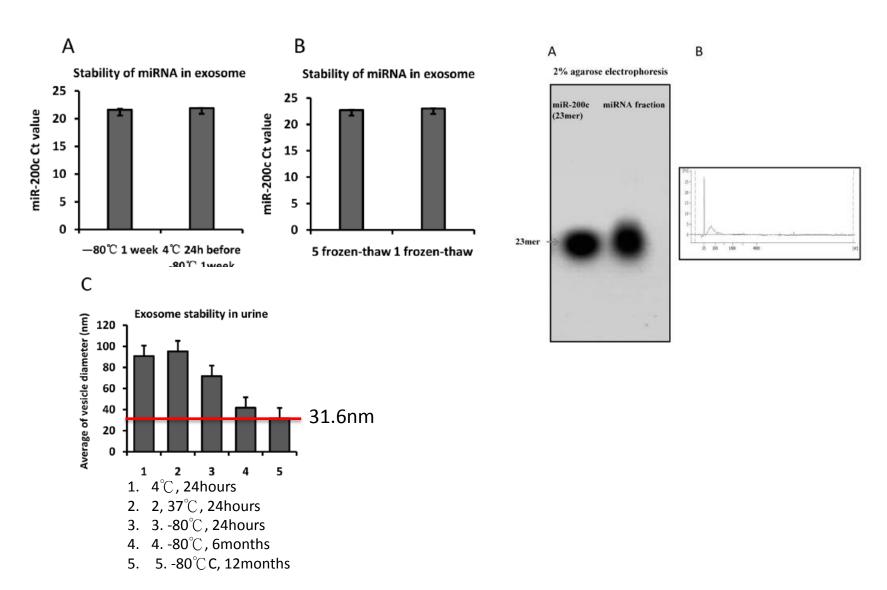
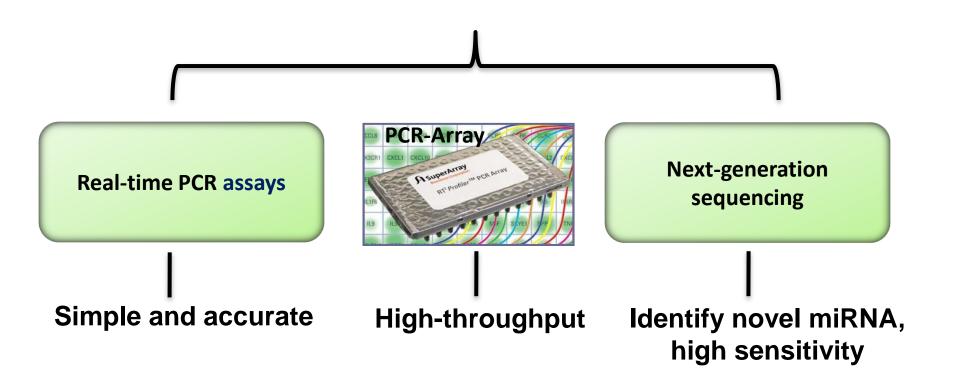


Table 1. Concentration of RNA isolated from different body fluids.^a

Sample	Median total RNA concentration, μg/L (interquartile range)	Number of detectable miRNAs
Amniotic fluid	570 (354)	359
Breast milk	47 240 (73 180)	429
Bronchial lavage	1128 (886)	260
Cerebrospinal fluid	111 (66)	212
Colostrum	585 (NA)	386
Peritoneal fluid	775 (345)	397
Plasma	308 (104)	349
Pleural fluid	470 (190)	210
Saliva	1945 (2495)	458
Seminal fluid	17 770 (7673)	436
Tears	564 (631)	320
Urine	94 (129)	204

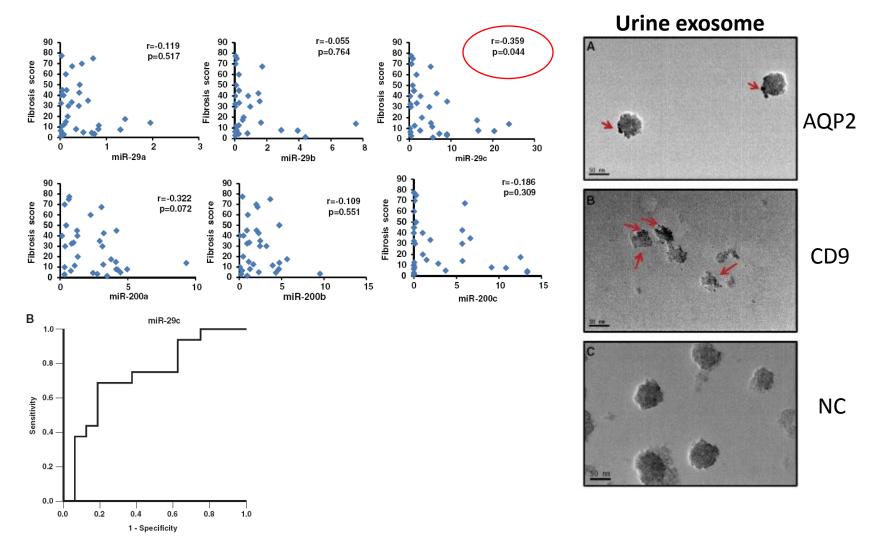

^a As estimated by the Agilent 2100 Bioanalyzer using the RNA 6000 Pico Total RNA chip, median concentration across all 5 samples except colostrum. The number of detected miRNAs in each body fluid is based on the number of miRNA species with a level of >80% of the global mean.

A variety of miRNA can be detected in urine


Advantages of urine exosome miRNA as biomarker

- Exosome may protect RNA during urine passage
- More stable than RNA extracted from whole urine
- Derived from functioning cells
- miRNA was enriched in exosome

Stability of exosome miRNA



Detection of miRNA

miR-29c from urinary exosome is potential biomarkers of renal fibrosis

Lv LL, Liu BC et al. Am J Physiol Renal Physiol 305: F1220–F1227, 2013.

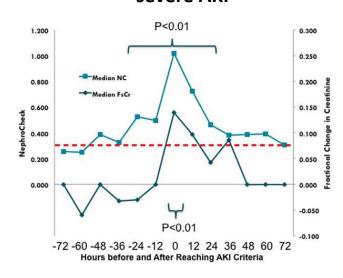
Challenges in kidney disease Biomarker Study

- Large cohort validation studies is lacked for most new biomarkers and very few novel biomarkers have been translated to clinic
- Urine (exosome) samples are often collected, processed and stored under different protocols
- Sensitivity and specificity not comparable to traditional clinic parameters

Phases of diagnostic or prognostic biomarker studies

	Description	Aim of study	sample sizes
la	Discovery	Identification of promising biomarkers	10–100
Ib	Assay development, assay validation	Define and optimize analytical process into robust, reproducible, and valid device	10–100
Ic	Retrospective validation	Clinical assay detects disease; development of first algorithm for combination test	50–500
11	Retrospective refinement	Validation of early detection properties of biomarker (set); development and/or refinement of algorithm(s) for combination tests	100–1,000
III	Prospective investigation	Determination of diagnostic accuracy (sensitivity, specificity) in the situation of clinical routine	200–1,000
IVa	Randomized controlled trial	Quantification of effect of making the biomarker information available to the doctor to reduce disease burden	200–1,000
IVb	Health economics study	Quantification of cost-effectiveness	

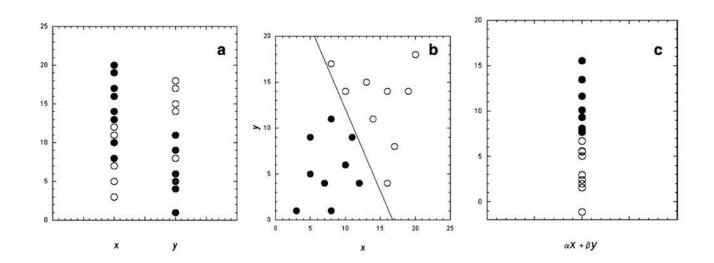
U.S. Food and Drug Administration


Protecting and Promoting Your Health

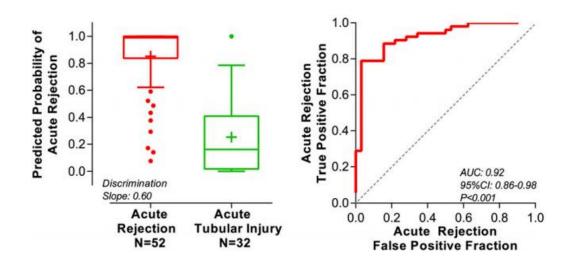
FDA News Release

FDA allows marketing of the first test to assess risk of developing acute kidney injury

Urine TIMP2 × IGFBP7 increases 24 hours before severe AKI



M Ostermann et al. Crit Care. 2014; 18(Suppl 1): P380. **Koyner et al.** JASN July 2015 26: 1485-1488


Multivariate biomarker to improve diagnostic performance

- Novel biomarker combined with traditional clinic parameters
- Multiple novel biomarker combined

Composite biomarker with multiple novel biomarkers

Development of a six-gene urinary cell diagnostic signature to differentiate acute rejection (AR) from acute tubular injury(ATI):

(0.523lnCD3)+(1.023lnCD105)+(0.813lnTLR4)+(21.163lnCD14) +(0.283 lnComplement Factor B)+(20.793lnVimentin)

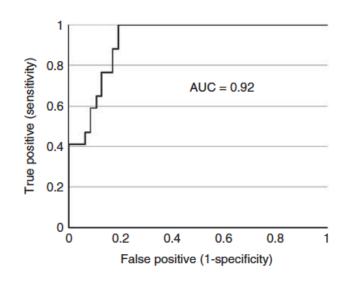

Combination of novel biomarker with traditional clinic parameters

Table 3 | Performance characteristics of biomarkers of interstitial inflammation for all biopsies^a

Biomarker	Threshold value ^b	Misclassifications (%)	Sens. (%)	Spec. (%)	PPV (%)	NPV (%)	AUC under ROC
uMCP-1	2.2	10/64 (16)	83	85	67	93	0.87
uLFABP	118	14/64 (22)	65	83	58	87	0.75
uHepcidin	136.5	22/64 (34)	83	60	42	90	0.70
uPCR	3.7	18/61 (30)	56	76	45	83	0.65
SCr	1.43	13/64 (20)	83	79	58	93	0.86
Equation (1) Y_1 (applied to all biopsies)	1	9/64 (14)	100	81	67	100	0.92
Equation (1) Y_1 (applied to 49 biopsies)	1	6/49 (12)	100	83	68	100	0.91

$$Y_1 = 0.992 * ln(uMCP - 1) + 2.213 * ln(Scr)$$

$$Y_2 = 4.177 * ln(uPCR) - 1.425 * ln(uHEP)$$

Summary

- Different component of urine contain rich information for biomarker discovery, among which urine (exosome) mRNA, miRNA were interesting target for further study.
- Large cohort validation study is needed for translating novel biomarkers to clinic.

We are expecting more potential urine biomarker translated to clinic!

Supported by:

- The key project of the national natural scientific foundation
- The national natural scientific foundation
- "973" grant (key member)

Thank you!

